ELMI was created in 2001 to establish a unique communication network between European scientists working in the field of light microscopy and the manufacturers of their equipment.
Looking for an engineer position to develop automated fluidics and microfabrication approaches for multi-conditions observation of 3D biological samples using the soSPIM technology
Project description
Spheroids and organoids have emerged in the last decade as very promising biological models for applications ranging from fundamental research to toxicology assays or drugs screening. However, the difficulties to culture and image them in 3D hamper their full adoption by laboratories and companies. In the meantime, Light Sheet Fluorescence Microscopy technics (LSFM) have proven to be extremely efficient for 3D imaging of biological samples at various spatial and temporal scales with minimal photo-damaging effects. However, LSFM technics are usually restricted in the number of sample and/or condition that can be probed due to complex sample mounting constraints. To address those questions, we develop in collaboration with V. Viasnoff and G. Grenci teams at MBI (NUS, Singapore) a culture and imaging platform combining microfabricated micro-wells, with a single-objective-based LSFM architecture named soSPIM 1. This combination allows to standardize and parallelize both the culture and the imaging of complex 3D biological models, paving the way toward the use of spheroids and organoids in multi-conditions screening experiments.
In that perspective, we aim to develop new culture vessels that would allow to transform our culture and imaging platform in a multi-condition one. Those new vessels will have to allow the appropriate and timely delivery of media and chemical compounds into the 3D cultured models. Then, a dedicated process will be implemented to allow the automated monitoring of those different conditions using the soSPIM 3D imaging technology.
For additional information please check the job offer.